Analysis of longitudinal marginal structural models.

نویسندگان

  • Jenny Bryan
  • Zhuo Yu
  • Mark J Van Der Laan
چکیده

In this article we construct and study estimators of the causal effect of a time-dependent treatment on survival in longitudinal studies. We employ a particular marginal structural model (MSM), proposed by Robins (2000), and follow a general methodology for constructing estimating functions in censored data models. The inverse probability of treatment weighted (IPTW) estimator of Robins et al. (2000) is used as an initial estimator and forms the basis for an improved, one-step estimator that is consistent and asymptotically linear when the treatment mechanism is consistently estimated. We extend these methods to handle informative censoring. The proposed methodology is employed to estimate the causal effect of exercise on mortality in a longitudinal study of seniors in Sonoma County. A simulation study demonstrates the bias of naive estimators in the presence of time-dependent confounders and also shows the efficiency gain of the IPTW estimator, even in the absence such confounding. The efficiency gain of the improved, one-step estimator is demonstrated through simulation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

مقایسه مدل‌های داده های طولی در انبساط آبی سه کامپوزیت متداول

 Background: Longitudinal studies are widely used in medical and social sciences. According to repeated measurements in these studies, independence assumption is not observed and therefore suitable models should be selected. In this study, application of marginal and transition models for analyzing the longitudinal data related to hygroscopic expansion of composite is shown.  Methods: ...

متن کامل

Marginal Analysis of A Population-Based Genetic Association Study of Quantitative Traits with Incomplete Longitudinal Data

A common study to investigate gene-environment interaction is designed to be longitudinal and population-based. Data arising from longitudinal association studies often contain missing responses. Naive analysis without taking missingness into account may produce invalid inference, especially when the missing data mechanism depends on the response process. To address this issue in the ana...

متن کامل

Robust Estimation of Inverse Probability Weights for Marginal Structural Models

Marginal structural models (MSMs) are becoming increasingly popular as a tool to make causal inference from longitudinal data. Unlike standard regression models, MSMs can adjust for time-dependent observed confounders while avoiding the bias due to the adjustment for covariates affected by the treatment. Despite their theoretical appeal, a main practical difficulty of MSMs is the required estim...

متن کامل

Bayesian Sample size Determination for Longitudinal Studies with Continuous Response using Marginal Models

Introduction Longitudinal study designs are common in a lot of scientific researches, especially in medical, social and economic sciences. The reason is that longitudinal studies allow researchers to measure changes of each individual over time and often have higher statistical power than cross-sectional studies. Choosing an appropriate sample size is a crucial step in a successful study. A st...

متن کامل

Marginal Structural Models versus Structural Nested Models as Tools for Causal Inference

Robins (1993, 1994, 1997, 1998ab) has developed a set of causal or counterfactual models, the structural nested models (SNMs). This paper describes an alternative new class of causal modelsthe (non-nested) marginal structural models (MSMs). We will then describe a class of semiparametric estimators for the parameters of these new models under a sequential randomization (i.e., ignorability) assu...

متن کامل

Targeted Maximum Likelihood Estimation for Dynamic and Static Longitudinal Marginal Structural Working Models.

This paper describes a targeted maximum likelihood estimator (TMLE) for the parameters of longitudinal static and dynamic marginal structural models. We consider a longitudinal data structure consisting of baseline covariates, time-dependent intervention nodes, intermediate time-dependent covariates, and a possibly time-dependent outcome. The intervention nodes at each time point can include a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biostatistics

دوره 5 3  شماره 

صفحات  -

تاریخ انتشار 2004